14 research outputs found

    CKM Gene rs8111989 Polymorphism and Power Athlete Status.

    Get PDF
    Multiple genetic variants are known to influence athletic performance. These include polymorphisms of the muscle-specific creatine kinase (CKM) gene, which have been associated with endurance and/or power phenotypes. However, independent replication is required to support those findings. The aim of the present study was to determine whether the CKM (rs8111989, c.*800A>G) polymorphism is associated with power athlete status in professional Russian and Lithuanian competitors. Genomic DNA was collected from 693 national and international standard athletes from Russia (n = 458) and Lithuania (n = 235), and 500 healthy non-athlete subjects from Russia (n = 291) and Lithuania (n = 209). Genotyping for the CKM rs8111989 (A/G) polymorphism was performed using PCR or micro-array analysis. Genotype and allele frequencies were compared between all athletes and non-athletes, and between non-athletes and athletes, segregated according to population and sporting discipline (from anaerobic-type events). No statistically significant differences in genotype or allele frequencies were observed between non-athletes and power athletes (strength-, sprint- and speed/strength-oriented) athletes. The present study reports the non-association of the CKM rs8111989 with elite status in athletes from sports in which anaerobic energy pathways determine success

    Athlome Project Consortium: a concerted effort to discover genomic and other "omic" markers of athletic performance.

    Get PDF
    Despite numerous attempts to discover genetic variants associated with elite athletic performance, injury predisposition, and elite/world-class athletic status, there has been limited progress to date. Past reliance on candidate gene studies predominantly focusing on genotyping a limited number of single nucleotide polymorphisms or the insertion/deletion variants in small, often heterogeneous cohorts (i.e., made up of athletes of quite different sport specialties) have not generated the kind of results that could offer solid opportunities to bridge the gap between basic research in exercise sciences and deliverables in biomedicine. A retrospective view of genetic association studies with complex disease traits indicates that transition to hypothesis-free genome-wide approaches will be more fruitful. In studies of complex disease, it is well recognized that the magnitude of genetic association is often smaller than initially anticipated, and, as such, large sample sizes are required to identify the gene effects robustly. A symposium was held in Athens and on the Greek island of Santorini from 14-17 May 2015 to review the main findings in exercise genetics and genomics and to explore promising trends and possibilities. The symposium also offered a forum for the development of a position stand (the Santorini Declaration). Among the participants, many were involved in ongoing collaborative studies (e.g., ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE). A consensus emerged among participants that it would be advantageous to bring together all current studies and those recently launched into one new large collaborative initiative, which was subsequently named the Athlome Project Consortium

    Investigation of MCT1 rs1049434, COL1A1 rs1800012 and COL3A1 rs1800255 variants related to susceptibility to injuries in professional football players

    No full text
    51st Conference of the European-Society-of-Human-Genetics (ESHG) in conjunction with the European Meeting on Psychosocial Aspects of Genetics (EMPAG), Milan, ITALY,JUN 16-19, 2018. Posters: E-P18.03Vilniaus universitetasVytauto Didžiojo universitetasŠvietimo akademij

    RTN4 AND FBXL17 GENES ARE ASSOCIATED WITH CORONARY HEART DISEASE IN GENOME-WIDE ASSOCIATION ANALYSIS OF LITHUANIAN FAMILIES

    No full text
    Coronary heart disease (CHD) is a complex and heterogeneous cardiovascular disease. There are many genome-wide association studies (GWAS) performed worldwide to extract the causative genetic factors. Moreover, each population may have some exceptional genetic characteristic. Thus, the background of our study is from the previous Lithuanian studies (the LiVicordia Project), which demonstrated the differences of the atherosclerosis process between Lithuanian and Swedish male individuals. In this study we performed GWAS of 32 families of Lithuanian origin in search of significant candidate genetic markers [single nucleotide polymorphisms (SNPs)] of CHD in this population. After careful clinical and biochemical phenotype evaluation, the ~770K SNPs genotyping (Illumina HumanOmniExpress- 12 v1.0 array) and familial GWAS analyses were performed. Twelve SNPs were found to be significantly associated with the CHD phenotype (p value 0.65). The odds ratio (OR) values were calculated. Two SNPs (rs17046570 in the RTN4 gene and rs11743737 in the FBXL17 gene) stood out and may prove to be important genetic factors for CHD risk. Our results correspond with the findings in other studies, and these two SNPs may be the susceptibility loci for CH
    corecore